Electronic structure of CMR compounds investigated by means of XES

K. Küpper¹, B. Schneider¹, S. G. Chiuzbaian¹, M. Matteucci² and D. D. Sarma³

 $^1{\rm University}$ of Osnabrück, Department of Physics, Barbarastr. 7, D-49069 Osnabrück, Germany

²Institute of Condensed Matter, National Research Council c/o Sincrotone Trieste,
Padriciano 99, 1-34012 Trieste, Italy

³Solid State and Structural Chemistry Unit, Indian Institute of Science,
Bangalore 560012, India

INTRODUCTION

In the last few years the manganese perovskites $\text{La}_{1-x}\text{A}_x\text{Mn}_{1-y}\text{TM}_y\text{O}_3$ (A = Ca, Ba, Sr, TM = Co, Ni, Fe) have been subject to intense experimental and theoretical studies due to the colossal magnetoresistance effect (CMR) [1, 2, 3]. The mother compound LaMnO₃ is an A-type antiferromagnetic insulator with orthorhombic crystal structure. We present results of Resonant X-ray emission spectroscopy (RXES) of LaMnO₃ performed at at Beamline 8.0.1 equipped with SXF endstation.

Recently the CMR effect in a double perovskite system, Sr_2FeMoO_6 , has been discovered [4]. This material shows a strong effect at low magnetic fields and a high ferromagnetic transition temperature ($T_c \approx 420K$) and a half metallic behaviour as predicted on the basis of band structure calculations. In contrast Sr_2FeWO_6 is an antiferromagnetic insulator [5]. Because of the different transport properties of these two materials, it is predicted that an alloy $Sr_2FeMo_xW_{1-x}O_6$ will show a metal-insulator transition (MIT) as a function of x. While in an earlier work the critical concentration was reported to be between 0.4 $< x_c < 0.5$ [6], Ray et. al. found $x_c \approx 0.25$ [7]. The aim of this work is to investigate the influence of the predicted MIT to the partial density if states. Therefore we recorded RXES data at the L edge of Fe, the M edge of Mo, and the K edge of O of Sr_2FeMoO_6 and $Sr_2FeMo_xW_{1-x}O_6$, respectively.

RESULTS AND DISCUSSION

Sr_2FeMoO_6 and $Sr_2FeMo_{0.6}W_{0.4}O_6$

Figure 1 shows the Fe L-emission spectra taken at indicated excitation energies, for both samples.

We recognise that these spectra for both materials look very similar. One can investigate additionally to the NXES-peak a rather weak elastic peak. At $E_{\rm exc} \approx 720~{\rm eV}$

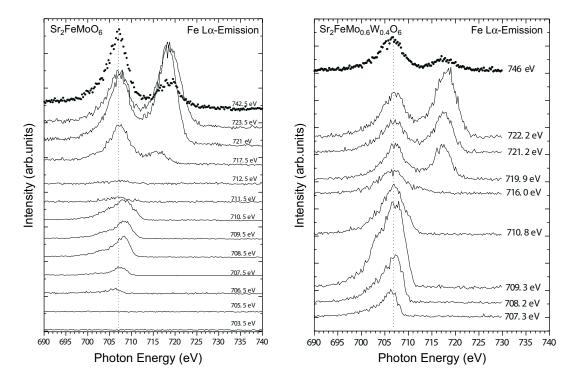


Figure 1: Fe L α emission spectra of Sr_2FeMoO_6 and $Sr_2FeMo_{0.6}W_{0.4}O_6$

a strong resonance for both samples can be observed. At $E_{\rm exc}=738$ eV one observes an emission from the 3d level not only into the $2p_{3/2}$ level but also into the $2p_{1/2}$ level. The intensity ratio of both components is slightly below the expected value of 2. This indicates the presence of Coster-Kronig-transitions. The O K α -emission spectra (not shown here) show for both materials only a weak energy dependence. The main emission features can be observed at 525.5 eV for both samples. This results are in good agreement with the relusts of Ray et. al. [7], the measurements of Fe L-emission of $Sr_2FeMo_{0.6}W_{0.4}O_6$ show no significant difference compared to the recorded spectra of $Sr_2FeMo_{0.6}W_{0.4}O_6$ shows halfmetallic behaviour, although doped with 40 % tungsten on Mo lattice site.

$LaMnO_3$

In figure 2 we present Mn L-emission spectra of LaMnO₃. The Mn L_{2,3} emission features are strongly dependent on the excitation energy. At $E_{exc}=642.7~{\rm eV}$ a maximum in intensity of three emission peaks around 640 eV is observed. With increasing excitation energy, the intensity of the L₂ emission peaks drops to almost zero when the L₃ emission peak reaches a maximum of intensity around 650 eV. At higher excitation energy the normal x-ray emission takes place. These results are in in further evaluation in order to prepare further measurements on ${\rm La_{1-x}A_xMn_{1-y}TM_yO_3}$ (A = Ca, Ba, Sr, TM = Co, Ni, Fe)-compounds. These measurements are necessary for a deeper understanding of hybridization in presence of different dopants in different concentrations.

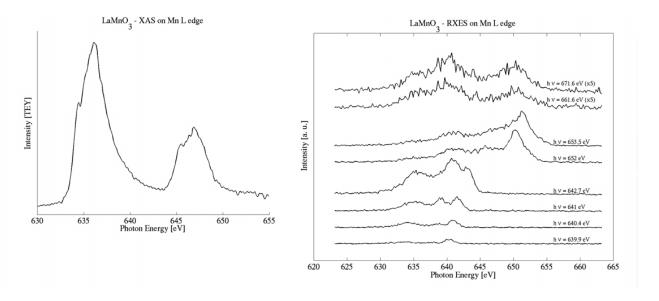


Figure 2: Mn L absorption and emission spectra of LaMnO₃

References

- [1] A. Millis, Nature, 1998, **392**, 147
- [2] M. B. Salamon and M. Jaime, Rev. Mod. Phys., 2001, 73, 583
- [3] I. O. Troyanchuk, M. V. Bushynski, N. V. Pushkarev, H. Szymczak, and K. Bärner, J. Mag. mag. Mat., 2001, 225, 331
- [4] K.-I. Kobayashi, T. Kimura, H. Sawada, K. Tekura, and Y. Tokura, Nature, 1998, 395, 677
- [5] H. Kawanaka, I. Hase, S. Toyama, and Y. Nishihara, Physica B, 2000, 281+282, 518
- [6] T. Nakagawa, K. Yoshikawa, and S. Nomura, J. Phys. Japan, 1969, 27, 880
- [7] S. Ray, A. Kumar, S. Majumdar, E. V. Sampathkumaran, and D. D. Sarma, J. Phys. Cond. Mat., 2001, 13, 607

This work was partly supported by BMBF (project 05SF8MPA/0)
Principal investigator: apl. Prof. Dr. M. Neumann, University of Osnabrück, Barbarastr. 7, D-49069 Osnabrück, Germany, Email: mneumann@uos.de, Telephone: +49541 969 2668